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Name Definition = | Algorithms Use cases
i 1 [ 1 [ | Singular values are| » SVD via spectral decomposition of AA* and| » Data compression, as Eckart-Young theorem
e unigue A* A - stability issues states that truncated SVD
i LI R B | If all o; are different, U | » Stable algorithm, O(mn?) flops (m > n): 1l
U > v and V-are unique up | 1 Bidiagonalize 4 by Householder reflections A = { "kai L
r = rank(A) fo unitary diagonal D: - . S Tk U
* * _ * * k k L
SVD U,V — unitary UXV™ = (UD)E(VD) A=U BV =U; Vi . . .
| o I ] yields best rank-k approximation to Ain || - |2 g
Singular Value |~ 91 = ... = or >0 arenonzero singular T some o; coincide, 2. Find SVD of B = U,X Vi by spectral decom- | » Calculation of pseudoinverse A, e.g. in solv-
values then U and V' are not » N . . . .
Decomposition) , unique position of T' (2 options): ng over/underdetermined, singular, orill-posed
columns of U, V' are singular vecftors o) T = B*B, don't form T explicitly! linear systems
Note: SVD can be also defined with U € C™*?, )T = {B B*} permute T to tridiagonal Feature extraction in machine learning
> e RP*P and V € C™P, p = min{n.m} 3.U =U Uy, V =ViVs Note: SVD is also called principal component analysis (PCA)
1] Not unigue: Assuming m > n. Model reduction, dafa compression, and
in A = CR version VS: » truncated SVD, O(mn?) flops, speedup of computations in numerical analy-
X = . sis: given rank-r maftrix with r < n, m one needs
VT OF — 099-1p _ OF TreEn st T to store O((n + m)r) < nm elements
g S - - RRQR: O(mnr) flops Feature extraction in machine learning, where
Skeleton or using matrix entries n A= CA7 R version . Cross approximation: O((n + m)r?) flops. It itis also known as matrix factorization
- 1 any dT Ijrnedrly llnde— is based on greedy maximization of [det(A)[. | All applications where SVD applies, since Skele-
(also known as ! gig ergws ggﬂumges Might fail on some A. ton decomposition can be transformed into
Rank = [ ][ } chosen Optimization methods (ALS, ...) for truncated SVD form
decomposition) A R |A — CR|| — min,
4 T e C.R
r = rank(A) sometimes with additional constraints, e.Q.
O and & are full column rank —nonnegativity of C' and R elements
~ —small norms of C and R
R and R are full row rank

AL Nof unique in tferms of | . QR algorithm, O(n*) flops: Computation of matrix spectrum
A= both U and T: per- A = QpRy, App1 = BipQy, Computation of matrix functions (Schur-Parlett
B S & L L mgwﬁgﬁ c];ri\ é’e bé)fr\ﬁ “Smart” QR algorithm, O(n3) flops: algorithm)
— U and off-diagonall 1-Reduce A to upper Hessenberg form ﬁg'r\]/)iﬂg matrix equations (e.g. Sylvester equa-
Schur Y part of T ~
A, ..., Ap Qre eigenvalues A=QYAQ =

columns of U are Schur vectors Note: then each iteration of QR algorithm will cost O(n?)

2. Run QR algorithm for A with shifting strat-
eqgy to speed-up convergence

- 1 10T 1 3 iff IVAZ- IS geo- If all X are differ-| . If A = A*, Jacobi method: O(n?) Fullslpec’rrol decomposition is rarely used unless
4 — meTrlc multiplic-|  ent, then unique up| e 4 4x A* A, QR algorithm: O(n?) all eigenvectors are needed
A Ty equals alge- 1o permutation and . s 5 | f one needs only spectrum, Schur decomposi-
- Lol e | braic multiplicity | scaling of eigenvec- | > If AAT # A™A, O(n”) flops: Hon is the method of choice
Spectral S A 5 3 and S — unit tors 1. Find Schur form A = UTU* via QR algo- . "
\ \, Qre eigenvalues - an uniary - e f matrix has no spectral decomposition, Schur
Lo 2n | I Ais Dormgl: I Some Ai Icommde, | o decomposition is preferable for numerics com-
columns of S are eigenvectors AA* = A* A, S is not unique 2. Given T find its eigenvectors V oared to Jordan form
e.g. Hermifian 3.5=UV, A\ = diag(T)
] 1 - - Unique if all diagonal,  Assuming m > n: Computation of orthogonal basis in a linear
A — e elements of i are set| | Grgm-Schmidt (GS) process: 2mn? flops; not| SPACe
- - fo e positive stable Solving least squares problem (mn > n):
] | RrR modified Gram-Schmidt (MGS) process: |Az —b||s — min = 2= R'Q*
s left unitary 2mn? flops; stable z
QR « Solving linear systems

via Householder reflections: 2mn? — (2/3)n°

flops; best for dense matrices, sequential Note: more stable, but has larger constant than LU

computer architectures; stable Don’t confuse QR decomposition and QR al-
A= m<n via Givens rotations: 3mn2 — n3 flops; best 9OMhm:
N L for sparse matrices, parallel computer archi-
() is unitary I tectures; stable
) 1 T 1 Not unique since| » Basic algorithm: Householder QR with col-| » Solving rank deficient least squares problem
AP = any r linearly inde-\ umn pivofing. On k-th iteration: Finding subset of linearly independent columns
RRQR pendent  columns| 1 Find column of largest normin Ry [ :, k:n] - - oyt
- e R T P can be selected - | kLerks Computatfion of maftrix approximation of a
Q is unitary R 2. Permute this column and the k-th column | given rank
(Rank | | | 3.Zero subcolumn of the k-th column by
Revealing @R) | » P I permutation matrix Householder reflection — Ry
r = rank(A) Complexity: O(nmr) flops
i L 11 _ Let det(A) #£ 0 Unique if det(A) # 0 Different versions of Gaussian elimination, | LU, LDL, Cholesky are used for
LU A= . LU 3 iff all leading O(n?) flops. In LU for stability use permuta- | solving linear systems. Given A = LU, complex-
- minors = 0 fion of rows or columns (LUP) ity of solving Az = bis O(n?):
L U O(n?) can be decreased for sparse matri- 1. Forward substitution: Ly = b
B 1T 1 [ ] Let det(A? = () ces by appropriate permutations, e.g. 2. Backward substitution: Uz = y
| DL A — LDL J iff A = .A* —minimum degree ordering matrix inversion
) ot e and all leading - Cuthil-Mckee algorithm computation of determinant
L D L Minors 7 0 Banded matrix with bandwidth b
i 1T i Cholesky H iff Unique if A = 0 i i} Cholesky is also used for
Cholesky A= A=A"and A =0 % computing QR decomposition
I A can be decompcgsed usi_ng O(nb?) flops
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