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Name Definition ∃ ! Algorithms Use cases

SVD

(Singular Value
Decomposition)

A =

[ ]
U

m×m

[ ]
σ1

σr

Σ
m×n

[ ]
V ∗

n×n

I r = rank(A)

I U , V — unitary
I σ1 ≥ . . . ≥ σr > 0 are nonzero singular

values
I columns of U , V are singular vectors

Note: SVD can be also defined with U ∈ Cm×p,
Σ ∈ Rp×p and V ∈ Cn×p, p = min{n.m}

I Singular values are
unique

I If all σi are different, U
and V are unique up
to unitary diagonalD:
UΣV ∗ = (UD)Σ(V D)∗

I If some σi coincide,
then U and V are not
unique

I SVD via spectral decomposition of AA∗ and
A∗A – stability issues

I Stable algorithm, O(mn2) flops (m > n):
1. BidiagonalizeAby Householder reflections

A = U1BV
∗

1 = U1

[ ]
V ∗1

2. Find SVD ofB = U2ΣV ∗2 by spectral decom-
position of T (2 options):

a) T = B∗B, don’t form T explicitly!
b) T =

[
B∗

B

]
, permute T to tridiagonal

3. U = U1U2, V = V1V2

IData compression, as Eckart-Young theorem
states that truncated SVD

Ak =

[ ]
Uk

m×k

[ ]
σ1

σk

Σk

k×k

[ ]
V ∗k

k×n

yields best rank-k approximation to A in ‖ · ‖2,F
ICalculation of pseudoinverse A+, e.g. in solv-
ing over/underdetermined, singular, or ill-posed
linear systems

I Feature extraction in machine learning
Note: SVD is also called principal component analysis (PCA)

Skeleton

(also known as
Rank

decomposition)

X =




U
m×r

[ ]
V >

r×n

or using matrix entries


A
m×n

=




Ĉ
m×r

[ ]
Â−1

−1

r×r

[ ]
R̂

r×n

I r = rank(A)

IC and Ĉ are full column rank
IR and R̂ are full row rank

Not unique:
I in A = CR version ∀S:

det(S) 6= 0:
CR = CSS−1R = C̃R̃

I in A = ĈÂ−1R̂ version
any r linearly inde-
pendent columns
and rows can be
chosen

Assuming m > n:
I truncated SVD, O(mn2) flops,

C = UrΣr, R = V ∗r

I RRQR: O(mnr) flops
ICross approximation: O((n + m)r2) flops. It
is based on greedy maximization of | det(Â)|.
Might fail on some A.

IOptimization methods (ALS, ...) for
‖A− CR‖ → min

C,R
,

sometimes with additional constraints, e.g.
– nonnegativity of C and R elements
– small norms of C and R

IModel reduction, data compression, and
speedup of computations in numerical analy-
sis: given rank-r matrix with r � n,m one needs
to store O((n + m)r)� nm elements

I Feature extraction in machine learning, where
it is also known as matrix factorization

IAll applications where SVD applies, since Skele-
ton decomposition can be transformed into
truncated SVD form

Schur

A =

[ ]
U

n×n

[ ]
λ1

λn

T
n×n

[ ]
U ∗

n×n

I U is unitary
I λ1, . . . , λn are eigenvalues
I columns of U are Schur vectors

INot unique in terms of
both U and T : per-
mutation of λ1, . . . , λn
in T will change both
U and off-diagonal
part of T

IQR algorithm, O(n4) flops:
Ak = QkRk, Ak+1 = RkQk

I “Smart” QR algorithm, O(n3) flops:
1. Reduce A to upper Hessenberg form

Ã = Q∗AQ =

[ ]
Note: then each iteration of QR algorithm will cost O(n2)

2. Run QR algorithm for Ã with shifting strat-
egy to speed-up convergence

IComputation of matrix spectrum
IComputation of matrix functions (Schur-Parlett
algorithm)

I Solving matrix equations (e.g. Sylvester equa-
tion)

Spectral

A =

[ ]
S

n×n

[ ]
λ1

λn

Λ
n×n

[ ]−1

S−1
n×n

I λ1, . . . , λn are eigenvalues
I columns of S are eigenvectors

I ∃ iff ∀λi its geo-
metric multiplic-
ity equals alge-
braic multiplicity

I ∃ and S – unitary
iff A is normal:

AA∗ = A∗A,
e.g. Hermitian

I If all λi are differ-
ent, then unique up
to permutation and
scaling of eigenvec-
tors

I If some λi coincide,
S is not unique

I If A = A∗, Jacobi method: O(n3)

I If AA∗ = A∗A, QR algorithm: O(n3)

I If AA∗ 6= A∗A, O(n3) flops:
1. Find Schur form A = UTU∗ via QR algo-
rithm

2. Given T find its eigenvectors V
3. S = UV , Λ = diag(T )

I Full spectral decomposition is rarely used unless
all eigenvectors are needed

I If one needs only spectrum, Schur decomposi-
tion is the method of choice

I If matrix has no spectral decomposition, Schur
decomposition is preferable for numerics com-
pared to Jordan form

QR

A =




Q is left unitary
m×n

[ ]
R

n×n

m ≥ n

A =

[ ]
Q is unitary

m×m

[ ]
R

m×n

m < n

I Unique if all diagonal
elements of R are set
to be positive

Assuming m > n:
IGram-Schmidt (GS) process: 2mn2 flops; not
stable

Imodified Gram-Schmidt (MGS) process:
2mn2 flops; stable

I via Householder reflections: 2mn2 − (2/3)n3

flops; best for dense matrices, sequential
computer architectures; stable

I via Givens rotations: 3mn2 − n3 flops; best
for sparsematrices, parallel computer archi-
tectures; stable

IComputation of orthogonal basis in a linear
space

I Solving least squares problem (m > n):
‖Ax− b‖2→ min

x
⇒ x = R−1Q∗b

I Solving linear systems
Note: more stable, but has larger constant than LU

IDon’t confuse QR decomposition and QR al-
gorithm!

RRQR

(Rank
Revealing QR)

AP =

[ ]
Q is unitary

n×n

[ ]
R

r n− r n×n

I P is permutation matrix
I r = rank(A)

INot unique since
any r linearly inde-
pendent columns
can be selected

I Basic algorithm: Householder QR with col-
umn pivoting. On k-th iteration:
1. Find column of largest norm in Rk[:,k:n]
2. Permute this column and the k-th column
3. Zero subcolumn of the k-th column by

Householder reflection→ Rk+1

Complexity: O(nmr) flops

I Solving rank deficient least squares problem
I Finding subset of linearly independent columns
IComputation of matrix approximation of a
given rank

LU A =

[ ]
1

1

L
n×n

[ ]
U

n×n

Let det(A) 6= 0

I LU ∃ iff all leading
minors 6= 0

I Unique if det(A) 6= 0 IDifferent versions of Gaussian elimination,
O(n3) flops. In LU for stability use permuta-
tion of rows or columns (LUP)

IO(n3) can be decreased for sparse matri-
ces by appropriate permutations, e.g.
–minimum degree ordering
–Cuthill–McKee algorithm

I Banded matrix with bandwidth b[ ]
2b

can be decomposed using O(nb2) flops

LU, LDL, Cholesky are used for
I solving linear systems. Given A = LU , complex-
ity of solving Ax = b is O(n2):
1. Forward substitution: Ly = b

2. Backward substitution: Ux = y

Imatrix inversion
I computation of determinant

Cholesky is also used for
I computing QR decomposition

LDL A =

 1

1

L
n×n

 
D

n×n

 1

1

L∗
n×n

Let det(A) 6= 0

I LDL ∃ iff A = A∗

and all leading
minors 6= 0

Cholesky A =

[ ]
L

n×n

[ ]
L∗

n×n

ICholesky ∃ iff
A = A∗ and A � 0

I Unique if A � 0
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